我们发现 ChatGPT 可以识别各种良好标记的层级结构内容。大模型可以识别文章的标题,段落名,段落正文等层级结构,如果我们告诉他标题,模型知道我们指的是标题以及标题下的正文内容。
这意味着我们将 prompt 的内容用结构化方式呈现,并设置标题即可方便的引用,修改,设置 prompt 内容。可以直接使用段落标题来指代大段内容,也可以告诉ChatGPT修改调整指定内容。这类似于编程中的变量,因此我们可以将这种标题当做变量使用。
Markdown 的语法层级结构很好,适合编写 prompt,因此 LangGPT 的变量基于 markdown语法。实际上除 markdown外各种能实现标记作用,如 json,yaml, 甚至好好排版好格式 都可以。
变量为 Prompt 的编写带来了很大的灵活性。使用变量可以方便的引用角色内容,设置和更改角色属性。这是一般的 prompt 方法实现起来不方便的。